Communications to the Editor

ISOLATION AND CHARACTERIZATION OF SPOREAMICIN C

Sir:

Sporeamicins A (Antibiotic L53-18 A)¹⁾ and B²⁾ are new 14-membered macrolide antibiotics isolated from *Saccharopolyspora* sp. L53-18. Their taxonomy of the producing culture, fermentation, isolation, structure determination and biological properties have been described in the preceding communications.^{2~5)} During the search for other antibiotics in the culture filtrates of the sporeamicin-producing strain, we discovered a new minor component designated sporeamicin C (Fig. 1) which is described in this communication.

Fermentation was carried out at 28° C for 161 hours in 250-liter fermenter containing a medium consisting of glucose 3%, corn steep liquor 1%, dry yeast 0.6%, cobalt chloride 0.001% and FS-antifoam 028 (Dow Corning K. K., Japan) 0.04% (pH 7.0).

The culture broth (200 liters) was filtered and the filtrate was extracted with ethyl acetate at pH 9.0. The isolation of the sporeamicin C was accomplished using the general procedure for basic macrolide antibiotics and it was purified by precipitation, silica gel column chromatography and preparative reverse-phase HPLC (TSK gel 120T, Tosoh) as shown in Fig. 2. The fractionation of the antibiotics was monitored by bioautography using Micrococcus luteus ATCC 9341 and by HPLC analysis using a Hitachi gel No. 3056 column ($416 \text{ mm} \times 15 \text{ cm}$) with UV detection at 275 nm. The mobile phase was CH₃CN - MeOH - 1/15 м AcONH₄ (50: 25: 35) with flow rate of 0.8 ml per minute. TLC systems as well as HPLC systems used clearly separated sporeamicins A, B and C.

Sporeamicin C is basic in nature and soluble in methanol, ethanol, acetone, ethyl acetate, benzene, chloroform and acidic water, but virtually insoluble in *n*-hexane and water. It gave positive color tests with potassium permanganate, iodine, Dragendorff and Molisch reagents, but was unreactive with ninhydrin or Sakaguchi reagent. The molecular formula of sporeamicin C was determined to be $C_{36}H_{61}NO_{12}$ based on FAB-MS (*m*/*z* 700, (M + H)⁺) and elemental analysis. The UV spectrum suggested the presence of an enone function (276 nm). The IR spectrum also showed the presence

of enone (1620, 1690 cm^{-1}), ester carbonyl (1740 cm⁻¹) and hydroxyl (3450 cm⁻¹) functions. Other physico-chemical properties of sporeamicin C are summarized in Table 1. These data are very similar to those of sporeamicins A and B.^{1~3}) However, among the known basic macrolide antibiotics, none shows UV spectra similar to that of sporeamicin A, B or C. The sporeamicin C is also distinguished from other macrolide antibiotics by their molecular weight and molecular formula as shown in Table 1. So we carried out the structure determination of sporeamicin C based on CI-MS and NMR data.

The molecular formula of sporeamicin C represents a compound possessing CH_2 atoms less that of sporeamicin A. In the CI-MS spectrum, the fragment ions m/z 542, 381 and 144 were observed. The physico-chemical properties, such as UV maximum at 276 nm and the fragment ion at m/z 381 in the CI-MS, suggested that the sporeamicins A and C have the same aglycon moiety in the structure. The fragment ions m/z 542 and 144 may be attributable to the aglycon-O-desosamine minus 14 and desosamine minus 14. It is indicated that the losing CH_2 atoms may be substituted on the desosamine moiety. The substituted position on the desosamine was determined by NMR data.

The ¹H and ¹³C NMR spectra of sporeamicin C in CDCl₃ are shown in Tables 2 and 3. The assignments were made on the basis of ¹H-¹H correlation spectroscopy (COSY) and ¹H-¹³C chemical shifts correlated with 2D NMR experiments. The ¹H NMR spectrum of sporeamicin C is very similar to that of sporeamicin A. However the

Fig. 1. The structures of sporeamicins A, B and C.

THE JOURNAL OF ANTIBIOTICS

Fig. 2. Procedure for isolating sporeamicin C.

Culture filtrate (180 liters)

extracted with EtOAc at pH 9.0

EtOAc layer

extracted with 0.1 M potassium phosphate buffer (pH 4.0)

```
Buffer layer
```

extracted with CHCl3 at pH 9.0

```
CHCl<sub>3</sub> layer
```

concd to dryness

Crude powder

	dissolved in CHCl ₃				
	mixed with hexane				
	centrifugation (3,000 rpm, 10 minutes)				
Su	pernatant				

concd to dryness dissolved in EtOAc held at room temperature filtered

Filtrate

concd to dryness dissolved in CHCl₃ mixed with hexane filtered

۱ Filtrate

concd to dryness

1

Silica gel chromatography

eluted with CHCl3 - MeOH - conc NH4OH (10:0.3:0.02)

the active fractions were collected and concd (sporeamicins B and C)

Silica gel chromatography

eluted with EtOAc - conc $\mathsf{NH}_4\mathsf{OH}$ (10:0.2) the active fractions were collected and concd filtered

Filtrate

concd to dryness

Crystal

dissolved in MeOH

discarded

Solid material

discarded

Crystal (sporeamicin A)

Preparative HPLC

eluted with 1/20 \mbox{m} KH_2PO4 - CH_3CN - MeOH (6 : 2 : 2)

the active fractions were collected

concd and extracted with $CHCl_3$ at pH 9.0

CHCl₃ layer

concd to dryness

White powder (sporeamicin C, 44 mg, yield 9%)

	Sporeamicin C	Sporeamicin A
Appearance	White powder	Colorless prism
FAB-MS (m/z)	$700 (M + H)^+$	$714 (M + H)^+$
Formula	$C_{36}H_{61}NO_{12}$	$C_{37}H_{63}NO_{12}$
Analysis Calcd for:	C 61.78, H 8.78, N 2.00	C 62.25, H 8.89, N 1.96
Found:	C 61.39, H 8.52, N 1.82	C 62.51, H 9.38, N 1.89
$[\alpha]_{\rm D}^{22}$	-41° (c 0.7, CHCl ₃)	-37° (c 0.8, CHCl ₃)
MP	197∼200°C	149~152°C
UV λ_{\max}^{MeOH} nm (ε)	276 (10,600)	276 (10,550)
TLC (Rf) ^a	0.22	0.36
HPLC (Rt) ^b	6.21	6.70

Table 1. Physico-chemical properties of sporeamicins A and C.

^a Absorbent; Silica gel f spot-film (Tokyo Kasei Co.). Solvent system; CHCl₃ - MeOH - conc NH₄OH (10:0.5:0.05). Detection; UV lamp at 254 nm and bioautography using *Micrococcus luteus* ATCC 9341.

^b Column; ODS, Hitachi gel No. 3056 (Hitachi, Ltd.). Equipment; Model 655 HPLC (Hitachi, Ltd.). Mobile phase; CH₃CN-MeOH-1/15 M AcONH₄ (50:25:35). Detection; UV absorption at 275 nm. Flow rate; 0.8 ml/minute, Rt value is expressed in minutes.

Position	δ (ppm) J (Hz)		Position	δ (ppm) J (Hz)		
I OSILION	Sporeamicin C	Sporeamicin A	residen	Sporeamicin C	Sporeamicin A	
15	0.89 (3H, t, J = 7.33)	0.89 (3H, t, $J = 7.32$)	NCH ₃	2.41 (3H, s)		
17	1.00 (3H, d, J = 7.33)	1.05 (3H, d, J = 7.32)	$N(CH_3)_2$		2.33 (6H, s)	
16	1.20 (3H, d, J=7.33)	1.19 (3H, d, J=6.84)	2	2.48 (1H, dq)	2.46 (1H, dq, $J = 5.86$,	
7″,	1.22 (3H, s)	1.23 (3H, s)			6.83)	
4′a	1.23 (1H, m)	1.34 (1H, m)	3'	2.59 (1H, ddd)	2.60(1H, ddd, J = 3.91,	
6'	1.25 (3H, d, J=7.32)	1.27 (3H, d, J=6.34)			10.25, 12.21)	
18	1.28 (3H, s)	1.25 (3H, s)	8	2.98 (1H, m)	2.99 (1H, m)	
6″	1.28 (3H, d, J=6.35)	1.30 (3H, d, J=6.34)	4″	3.02 (1H, d, J = 9.28)	3.03 (1H, d, J=9.28)	
19	1.31 (3H, d)	1.37 (3H, d, J=6.83)	OCH ₃	3.25 (3H, s)	3.29 (3H, s)	
21	1.35 (3H, s)	1.37 (3H, s)	2′	3.29 (1H, dd, J = 7.81,	3.36 (1H, dd, J = 7.33,	
2″a	1.54 (1H, dd)	1.55 (1H, dd, J = 4.88,		9.28)	10.25)	
		15.14)	5	3.67 (1H, dd, J = 3.91)	3.67 (1H, dd, J = 3.91)	
4	1.57 (1H, m)	1.66 (1H, m)	5'	3.71 (1H, m)	3.64 (1H, m)	
7a	1.70 (1H, dd)	1.86 (1H, dd, $J = 6.84$,	3	3.97 (1H, dd, J=2.93,	4.03 (1H, dd, $J = 2.93$,	
		15.14)		5.37)	5.37)	
20	1.73 (3H, s)	1.74 (3H, s)	5″	4.12 (1H, dq, J=6.35,	4.09 (1H, dq, $J = 6.35$,	
14a	1.73 (1H, m)	1.80 (1H, m)		9.28)	9.28)	
4′b	1.98 (1H, m)	1.71 (1H, m)	1'	4.41 (1H, d, <i>J</i> =7.81)	4.50 (1H, d, J=7.32)	
14b	2.13 (1H, m)	2.00 (1H, m)	1″	4.82 (1H, dd)	4.81 (1H, dd)	
7b	2.25 (1H, dd)	2.12 (1H, dd, J=2.69,	13	5.07 (1H, dd, J=2.68,	5.01 (1H, dd, $J = 3.42$,	
		14.90)		11.48)	10.74)	
2″b	2.33 (1H, dd)	2.31 (1H, m)				

Table 2. ¹H NMR chemical shifts of sporeamicins A and C (CDCl₃, 400 MHz, 27°C).

 $N(CH_3)_2$ signal (2.33 ppm, 6H) in sporeamicin A disappeared, and NCH₃ signal (2.41 ppm, 3H) appeared in sporeamicin C. In the ¹³C NMR $N(CH_3)_2$ signal (40.42 ppm) in sporeamicin A shifted downfield and gave the NCH₃ signal (33.29 ppm) in sporeamicin C. Based on these data presented, we determined the structure shown in

Fig. 1 for sporeamicin C.

Sporeamicin C exhibited antibacterial activity against Gram-positive bacteria (Table 4). The antibacterial activities of sporeamicin C were much less than those of sporeamicin A.

The difference of basic sugar moiety between sporeamicins A and C is the same as that between

D	δ (ppm)		Desition	δ (ppm)	
Position	Sporeamicin C	Sporeamicin A	Position	Sporeamicin C	Sporeamicin A
20	5.85 (q)	6.00 (q)	OCH ₃	49.24 (q)	49.29 (q)
15	10.48 (q)	10.72 (q)	3'	60.16 (d)	64.65 (d)
17	11.25 (q)	10.93 (q)	5″	66.36 (d)	66.17 (d)
16	15.80 (q)	14.06 (q)	5'	69.78 (d)	69.69 (d)
6″	17.52 (q)	17.67 (q)	3″	72.77 (s)	72.80 (s)
21	20.14 (q)	20.62 (q)	2'	73.38 (d)	70.58 (d)
6'	20.75 (g)	21.01 (q)	6	74.15 (s)	74.76 (s)
14	20.95 (t)	21.34 (t)	4″	77.23 (d)	77.54 (d)
7″	21.40 (g)	21.53 (g)	13	77.61 (d)	77.93 (d)
19	22.47 (a)	21.10 (g)	3	79.72 (d)	78.55 (d)
18	26.98 (q)	26.37 (q)	12	87.63 (s)	87.14 (s)
8	31.23 (d)	31.79 (d)	5	89.33 (d)	86.28 (d)
NCH ₂	33.29 (q)		1″	97.59 (d)	96.57 (d)
$N(CH_3)_2$		40.42 (q)	1′	105.88 (d)	104.80 (d)
2"	35.19 (t)	35.05 (t)	10	108.15 (s)	108.58 (s)
4′	36.87 (t)	29.13 (t)	1	174.88 (s)	175.90 (s)
7	41.36 (t)	41.82 (t)	9	192.76 (s)	193.02 (s)
4	43.31 (d)	43.05 (d)	11	205.13 (s)	204.96 (s)
2	48.26 (d)	46.31 (d)		(-)	

Table 3. ¹³C NMR chemical shifts of sporeamicins A and C (CDCl₃, 100 MHz, 27°C).

Table 4. Potency of sporeamicins A and C against a variety of bacteria.

Strain No	MIC (μ g/ml) (10 ⁶ cells/ml)			
Strain No.	Sporeamicin C	Sporeamicin A		
Staphylococcus aureus FDA 209P JC-1	6.25	0.20		
S. aureus Smith	6.25	0.39		
S. epidermidis ATCC 27626	3.13	0.20		
Streptococcus pyogenes N.Y. 5	0.39	≦0.05		
S. pyogenes S-23	0.39	≦0.05		
Micrococcus luteus ATCC 9341	0.78	≦0.05		
Bacillus subtilis ATCC 6633	1.56	≦0.05		
Escherichia coli NIHJ JC-2	>100	>100		
Klebsiella pneumoniae NCTC 9632	>100	>100		
Pseudomonas aeruginosa PA01	>100	>100		

erythromycin A and de-N-methylerythromycin A.⁶⁾ The antibacterial spectra of the sporeamicins were also similar to those of erythromycin A and de-N-methylerythromycin A. Notably, sporeamicin C appeares to be biosynthetic precursor of sporeamicin A, whereas the de-N-methyl variant of erythromycin A was first noted as matabolite from animals fed the latter.

Atsuki Morishita Sakae Murofushi Kenya Ishizawa Naoki Mutoh Satoshi Yaginuma Research Laboratories, Toyo Jozo Co., Ohito, Shizuoka 410-23, Japan

(Received December 27, 1991)

References

- YAGINUMA, S.; A. MORISHITA, N. MUTOH, K. ISHIZAWA, M. HAYASHI & T. SAITOH (TOYO JOZO): Antibiotic L53-18 A. Jpn. Kokai 190189 ('90), July 26, 1990 [EP 379 395 July 25, 1990]
- MORISHITA, A.; S. MUROFUSHI, K. ISHIZAWA, N. MUTOH & S. YAGINUMA: Isolation and characterization of sporeamicin B. J. Antibiotics 45: 809~812, 1992
- 3) YAGINUMA, S.; A MORISHITA, K. ISHIZAWA, S. MUROFUSHI, M. HAYASHI & N. MUTOH: Sporeamicin A, a new macrolide antibiotic. I. Taxonomy, fermentation, isolation and characterization. J. Antibiotics 45: 599~606, 1992
- MORISHITA, A.; K. ISHIZAWA, N. MUTOH, T. YAMAMOTO, M. HAYASHI & S. YAGINUMA: Sporeamicin A, a new macrolide antibiotic. II. Structure determination. J. Antibiotics 45: 607~612, 1992
- MORISHITA, A.; N. MUTOH, K. ISHIZAWA, T. SUZUKI, S. YOKOIYAMA & S. YAGINUMA: Sporeamicin A, a new macrolide antibiotic. III. Biological properties.

- J. Antibiotics 45: 613~617, 1992
- 6) UMEZAWA, S.: Antibiotics produced by Actinomy-

cetes. In Antibiotics. Ed., S. UMEZAWA, pp. 83~84, Baifukan Press, Tokyo, 1954